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MATRIX ANALYSIS OF LONGITUDINAL AND TORSIONAL 

IN NONUNIFORM MULTIBRANCH BEAMS 

VIBRATIONS 

By Robert T. Wingate 
Langley iiesearch Center 

SUMMARY 

Since longitudinal modes and frequencies provide basic data for dynamic analyses 
of arbitrary beam-like s t ructures  and since closed-form solutions for the modes a r e  
generally not feasible to obtain, an approximate method is developed for  computing 
the natural frequencies and the corresponding mode shapes for a variable-section, 
unconstrained multibranc h beam. 

A lumped mass  analogy employing influence coefficients is used to represent the 
beam. The simultaneous equations of motion for  the lumped mass  system a r e  derived in 
matrix form and algebraically manipulated to yield a classical eigenvalue equation solv- 
able by standard procedures. The orthogonality relationship of the natural modes is 
derived and used to form the basis  of an orthogonal sweeping process for determination 
of modes above the fundamental. 

Numerical examples including an application to a solid-fuel launch system a r e  pre-  
sented. Also, a detailed discussion is devoted to the theoretical verifications of the 
approximate modes and frequencies. 

INTRODUCTION 

The capability to calculate the longitudinal natural frequencies and associated mode 
shapes of beam-like structures, such as solid-fuel launch-vehicle systems, railroad 
trains, machine shafts, and piles, is of basic importance. The natural frequencies pro- 
vide necessary design information and the modal functions, because of their special 
orthogonal properties, a r e  ideal for use  in "series" solutions to the differential equations 
of motion. 
tool for the analysis of transient o r  steady-state response of a structure to disturbing 
forces. 

Such "series" or "normal mode" solutions provide a powerful mathematical 

For  purposes of calculating the frequencies and mode shapes, slender s t ructures  of 
the type mentioned a r e  usually represented as a simple beam which may have a varying, 
even discontinuous, c ros s  section. However, for structures carrying elastic appendages 



b 

(e.g., a launch vehicle with a flexible payload within a flexible heat shield) it is sometimes 
necessary to represent the structure as-a branched beam - that is, a main beam with 
subsidiary beams attached at points along its axis. 

# 

Exact solutions for the longitudinal frequencies of even a simple beam are not fea- 
sible except for very special cases of the cross-sectional variation (the solution fo r  a 
constant cross  section is, of course, well known). In reference 1 Bessel function solu- 
tions were obtained for a limited number of variable-cross-section beams with free-free 
ends and fixed-free ends. Also, in reference 2 Bessel function solutions were obtained 
f o r  a fixed-free beam with a linearly varying c r o s s  section. In practical work, however, 
recourse is generally to approximate solutions. 

The purpose of this paper is to present an approximate method for computing the 
longitudinal natural frequencies and mode shapes for a general variable-cross-section, 
multibranch beam. 
extension of this procedure to other boundary conditions is straightforward. Through a 
change of variables the derived equations are also applicable to torsional problems in 
which the branch beams are everywhere concentric with the main beam. 

The method is derived for free or  unconstrained beams; however, the 

Available approximate methods for the calculation of frequencies and modes of 
structures a r e  voluminous, but literature on their application to longitudinal vibrations 
of multibranch structures is scant. The longitudinal vibrations of beams have been 
treated i n  several  papers (e.g., ref. 3) by the so-called "stiffness" matrix approach in 
which the beam is idealized as a number of point masses  connected by springs. The 
simultaneous equations of motion for the point masses,  when written in matrix form, yield 
a classical eigenvalue problem which is solvable by standard methods. 
efficient when i t  works but suffers from the disadvantage that the lower frequencies, which 
are generally of prime interest, are associated with the subdominant eigenvalues. The 
author's experience, as well as that of others (ref. 4), has shown that matrix eigenvalue 
problems break down in the computation of the subdominant eigenvalues whenever they 
become small in comparison with the dominant eigenvalue. 

This approach is 

The spring-mass idealization of a structure has  also been utilized (e.g., ref. 5) to 
analyze longitudinal vibrations by a method associated with Holzer (ref. 6). This approach 
has an advantage for structures with many discontinuities in the stiffness and m a s s  in 
that, through a recurrence equation, a very large number of m a s s  points may be used 
without storing a large matrix in the computer. A fine definition of the mode shape can 
thus be obtained. It has the disadvantage that it is prone to roundoff e r r o r  and other loss  
of numerical significance especially in the higher modes. Also, close attention is 
required to avoid missing modes in the t r ia l  and e r r o r  search for frequencies, and a large 
number of iterations are required to cover the frequency spectrum of all the modes. 

2 



The method presented in this paper is a "flexibility" or influence coefficient matrix 
approach for the analysis of natural longitudinal or torsional vibrations of a multibranch 
beam. This method, which w a s  originally developed in reference 7, is an adaptation of a 
procedure described in reference 8 fo r  computing the lateral bending modes and frequen- 
cies of a single beam, It is attractive because of simplicity in derivation and its adapta- 
bility to digital programing. The major advantage, however, is that the lower frequencies 
a r e  associated with the dominant eigenvalues and potential problems of accuracy loss  in 
the lower modes and other losses  in numerical significance are virtually eliminated. The 
development is completely general and requires only basic parameter changes from one 
application to another. 

By proceeding from basic physical assumptions, simple matrix algebra is used to 
obtain the characteristic equation in matrix form. Iterative procedures for obtaining the 
frequencies and modes are then discussed. Numerical examples a r e  given for an ideal- 
ized beam and a typical solid-fuel launch vehicle to illustrate the formulation and solution 
of the derived matrix equations. Also, a detailed discussion is devoted to the accuracy of 
the method in comparison with exact solutions and solutions by the "stiffness" matrix 
approach. 

SYMBOLS 

A s t ressed  cross-sectional area, inches2 (meters2) 

A(j) s t ressed cross-sectional a r ea  of jth branch, a function of x, inches2 
( m e t e d )  

E Young ' s modulus, pounds for c e/inc h2 (new tons/m e ter  s2) 

E(j) Young's modulus of jth branch, a function of x, pounds force/inch2 
(newtons/meterZ) 

axial force at pounds force xs(k)y (new tons) 

of rth mass,  of jth 1(0) influence coefficient, deflection relative to x 
branch, due to a unit force at sth mass  of kth branch, inches/pound force 
(meter s/newton) 

Gr(j),s(k) 

j index denoting jth branch 

k index denoting kth branch 
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L overall length of main or 0th branch, inches (meters) 

” (  meters2 
m ounds-seconds newtons-seconds 

pounds-seconds2 

mass  per  unit length, p 
inch2 

s th  mass  of kth branch located at x s (k) , inch 
seconds2 

meter 

ms(k) 

M Pounds- seconds2 seconds 
meter  

total mass,  
inch 

n index denoting total number of lumped masses  in a system 

P index, corresponds to pth natural mode 

q index, corresponds to qth natural mode 

t time, sec 

U displacement from unstrained position, function of x and t, inches 
(meters) 

vQ index denoting total number lumped masses  on Mh branch 

X longitudinal coordinate, inches (meters) 

distance of r(j)th, s(k)th lumped mass  from origin, inches (meters) xr (j) 9xs(k) 

77 exponent for parameter study 

x eigenvalue 

5 longitudinal coordinate, inches (meters) 

displacement amplitude, function of x, denotes deflection f rom unstrained cp r (j) ’ cp s (k) 
position of r(j)th, s(k)th discrete  mass,  inches (meters) 

w circular frequency of simple harmonic vibration, radians/second 
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Subscripts: 

a 

b 

r(j) 

s (k) 

max maximum 

ath row of a matrix 

bth column of a matrix 

r th  mass  of jth branch 

sth mass  of Mh branch 

ref reference 

Matrix notation: 

diagonal matrix 

square or rectangular matrix 

transpose of matrix 

row matrix 

column matrix 

identity matrix 

square matrix of all unit elements 

row matrix of all unit elements 

column matrix of all unit elements 
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ANALYSIS b 

A lumped mass  analogy of a beam is developed. This analogy is then extended to 
obtain a lumped mass  representation of a general unconstrained multibranch beam. 
Through an influence coefficient approach, the longitudinal equations of motion for the 
lumped mass system a r e  derived in t e rms  of one-dimensional beam theory and reduced 
to a matrix eigenvalue problem which determines the natural frequencies and the asso- 
ciated modal vectors. A procedure for computing the influence coefficients is given, the 
orthogonal properties of the modal vectors a r e  demonstrated, and an iterative method is 
presented for solving the eigenvalue problem. Since these equations a r e  based on one- 
dimensional beam theory, they should be applied with reservation to s t ructures  which 
depart from this concept (e.g., thin-wall cylindrical shells of large diameter, shells con- 
taining a sloshing fluid, etc.). 

Derivation of the Lumped M a s s  Equations for a Single Beam 

The so-called "lumped mass" analogy in which a structure is represented as a 
se r i e s  of lumped masses  connected by mass less  springs offers an effective simple 
approach to vibration analyses. The transition from a continuous system to a lumped 
system, however, has generally been somewhat of an arbitrary process which depended 
on the judgment of the analyst. A formal derivation of the lumped mass  approach is 
obtained by the direct  collocation method as shown herein. This process involves satis- 
fying the integral equations of motion at a finite number of selected points. 

Consider a general nonuniform beam (sketch 1) which is fixed at an arbitrary point 
xf with a concentrated axial unit load applied at X = t;. The resulting deflection at any 
point x due to the unit load at t; is designated as the Green's function o r  influence 
function G(x, C;) . 

Sketch 1 

By utilizing this influence function, the deflection u(x,t) at any point x due to a 
distributed axial force F(t;,t), which includes inertial forces, is given by superposition as 
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If the fixity constraint at 
body, equation (1) becomes 

xf is released and the beam is allowed to translate as a f r ee  

P L  

where u(xf,t) is the rigid body displacement of the influence function reference point xf. 
Assume that the unconstrained or free-free beam vibrates in simple harmonic motion of 
frequency w and amplitude cp(x); then, 

u(x,t) = q7(x)eiwt (3) 

where i = c. In the absence of external forces  the axial force is caused only by the 
inertia loading of the distributed mass  m(x) and is given as 

2 i w t  F(x,t) = -m(x) u(x,t) = w m(x) cp(x)e (4) 

where a dot denotes differentiation with respect to  time. Substituting equations (3) and 
(4) into equation (2) and canceling eiwt gives 

The beam length from x = 0 to x = L is divided into v intervals (sketch 2) 
which are arbitrari ly spaced except that an interval marker  is assumed to coincide 
with any discontinuity in axial stiffness. The interval boundaries are denoted by xs 
where s = 1 to v +  1. 

x = o  

x1 I'i" x2 x3 
XV xV+l 

Sketch 2 

By introducing the function H(x,[) = G(x,[) c p ( [ ) ,  equation (5) can be written as 

The s t ructure  is continuous in the neighborhood of tS so that the function H(x,[) can be 
expanded into a Taylor series about .Es, where xs < E s  < xs+l, to give 
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H(x, 5) = H(x,ts) + H’( x, tS)(5 - tS) + OAts2 (7) * 

where the prime denotes d/d[ and OAtS2 denotes t e r m s  of order  ( 5  - ts? and 
higher. Neglecting higher order  t e rms  and substituting equation (7) into equation (6) 
yields the approximate relationship 

In equation (8) if 
then the second integral vanishes identically. Therefore, by defining 

tS is chosen to be the m a s s  center of gravity between xs and xs+l, 

X S  
J 

and 

equation (8) becomes 

mS =sxscl m(t)  d t  
X S  

V 

‘ped = ‘p(”f) + ClJ2 L -s G(x,Ss)ms‘ps 
s= 1 

where ‘ps = ‘ p ( t S ) .  

The vanishing of the second integral in equation (8) when 5, is chosen to be the 
interval center of gravity (c.g.) suggests that this is an optimum location of the point 
mass  to minimize the e r r o r  bounds (i.e., the maximum possible e r r o r  involved in 
replacing the continuous system by-the lumped m a s s  system). Further discussion of 
these approximation e r r o r s  is presented in a subsequent section. 

For convenience, xf = t1 
function G(x,<). Equation (11) fo r  x = tr, where r = 1 to  v, yields a set of equations 
which can be conveniently written in matrix notation as 

is chosen to  be the reference point for  the influence 
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. 
*where Gr,s = G([,,ts) and r,s = 1 to v. 

It is more convenient and equally cor rec t  to wri te  equation (12) as 

where r,s = 1 to v. 

Derivation of the Lumped Mass Equations for a Multibranch Beam 

The lumped mass  approach established for a single beam is extended herein to 
derive s imilar  equations of motion for a c lass  of multibranch beams; this c lass  consists 
of a main beam with subsidiary beams attached along its axis like a tree trunk and its 
branches. Further, the subsidiary o r  branch beams are parallel t o  the main branch. 

For  branch identification purposes, the main branch is denoted as the 0th branch; 
all subbranches a r e  denoted by the mass  on the 0th branch to which they a r e  attached. 

The lumped masses  of each branch a r e  numbered consecutively from 1. The 
masses  of the various branches a r e  then distinguished from each other by a branch index 
which appears in  parentheses after the mass number. The same mass-number-branch- 
number index system is also used for the x-locations of the respective masses.  

Consider, for a moment, the main branch of a general multibranch beam. This 
branch can be divided into "~(0)"  panels o r  intervals of arbitrary length as shown by the 
dashed line in sketch 3. 

Sketch 3 

The total weight of each panel can then be concentrated in the form of a lumped 
mass  at  its center of gravity x where r = 1 to v(0). (See sketch 4.) To be con- 
sistent with the notation introduced, it is necessary that each subbranch attach to a mass  
on the main branch. 

r(0)' 
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Sketch 4 

Then as shown in sketch 5, any subbranch can be lumped and attached to the appropriate 
mass  on the main branch. 

+ 1 p- -"v(2) 

xv(2) 

+-X1(2) 4 

a a - w f- 
"1(0) "2(0) m3(0) mv(o) 

Sketch 5 

due to  a u n i t  

is then given by superposition 
r(j) define the deflection, relative to  x 1(0)' at x = x r(j),s(k) 

Let G 

force at x = 
as 

r(j) 
The total deflection at station x 's(k)' 

is 
The right-hand summation of equation (14) is over 

s (k) 
and F 

1(0) is the rigid body translation of the reference point x where u 
the axial inertia force at x = x 
the total number of masses  of a given branch and the left-hand summation is over the 
total number of branches. 

s (k) - 

Equation (14) is formulated as though a branch is located at every mass  on the 
0th branch. The equation holds for  fewer branches, however, i f  the subscripts j and k 
only assume the values corresponding to branch locations (in addition to 0 for  the main 
branch). For example, i f  branches were located at x 1 (0) ' 7(0)' then and x 

5 (0) 

j,k = 0, 1, 5, 7 
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The subscripts j and k always begin with 0, and for systems consisting only of the 
main branch they only assume the value of 0. 

If j = 0 to v(0) and equations (3) and (4) are  utilized, equation (14) yields a set of 
equations which can be written in the following matrix form: 

where 

r = 1 to v(j) 

s = 1 to v(k) 

j,k = 0 t o  v(0) 

11 



k -  

i 
P s ( k d  = 

Each of the dotted-line compartments represents  a partitioned submatrix. 
tion (12), it is correct  and useful to write equation (15) as 

As for  equa- 

(16) 

Equations (14), (15), and (16) a r e  then respectively analogous to equations (ll), (12), and 
(13) which were previously derived. 

Since the beam is considered to be f r ee  or unconstrained, longitudinal equilibrium 
requires  that 

Again, by utilizing equations (3) and (4) equation (17) leads to 

o r  in matrix form to 

Premultiplying equation (16) by klkr(jd, utilizing equation (18), and solving for 

'PI(()) gives 

12 



where 

is the total mass  of the system. Substituting equation (19) into equation (16) gives 

where 

The index notation of equation (20) has utility only in the derivation and interpretation of 
the numbers which form the matrix a r rays .  Therefore, to simplify the notation the fol- 
lowing matr ices  are redefined and used interchangeably: 

where 

a,b = 1 to n 

r = 1 to v(j) 

s = 1 to V(k) 

j,k = 0 to v(0) 

and the subscript n represents  the total number of lumped masses  comprising the 
system. 
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Equation (20) can then be written more compactly as 

where 

a,b = 1 to n 

and 

1 A = -  
2 w 

Equation (21) is the familiar form for a matrix eigenvalue problem and can be 
solved by a number of classical procedures. One of these procedures (an iterative solu- 
tion involving orthogonality sweeping for determining modes higher than the fundamental) 
is presented subsequently . 

Calculation of Influence Coefficients 

with a unit load applied in the positive 1(0) Consider a beam fixed at station x 
as shown in sketch 6. 

s (k) x-direction at station x 

Sketch 6 

The deflection at any point x is then defined as an influence coefficient. These 
are derived for all combinations of deflections or influence coefficients G 

j 5 k through the use  of elementary one-dimensional beam theory, as follows: 

r(j) 
r(j) , s Q 
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* F o r  j = k = 0 ,  

For j = O  and k # 0 ,  

For j,k # 0, 

(r 2 s) (22) 

(r 5 k) (23) 

(j = k and r 2 s) 

The absolute value of the integral in  equation (26) allows for the possibility of a branch in  
either the positive o r  negative x-direction. 

All values of the influence coefficients for  j > k can be determined from Maxwell’s 
reciprocal theorem; thus, 

The 1/AE function in  the Gr(j),qk) integral is generally a highly discontinuous 
function and, therefore, a numerical form of integration is expedient. A simple quadra- 
tu re  numerical integration will give excellent results and yields the exact answer provided 
that the 1/AE curve is a straight line between intermediate integration points. For a 
curved line, the intermediate integration points should be generously chosen so that the 
curve can be approximated as a straight line between them. 

Application of the Method to Torsional Vibrations 

The Saint-Venant torsion theory fo r  prismatical bars leads to the following classical 
equation of motion for torsional vibrations: 

15 



&(c g) = I - a2 e 
at2 

where 

C = C(x) torsional rigidity (ref. 9) 

I = I(x) polar mass  moment of inertia per  unit length 

e = e(x,t) cross-section rotation 

For a circular c ros s  section the torsional rigidity is 

C = JG (29) 

where J is the polar moment of inertia of the c ros s  section and G is the shear  
modulus. Equation (28), for bodies of revolution, thus becomes 

ax a (JG 2) = I - a2 e 
at2 

The s imilar  one-dimensional equation of motion for longitudinal vibrations on which 
the derivations of foregoing sections a r e  founded is 

where 

A = A(x) cross-sectional a r ea  

E modulus of el as ti city 

m = m(x) mass  per  unit length 

u = u(x,t) cross-section displacement 

If equation (28) (or eq. (30)) is compared with equation (3l), it is seen that C 
(or JG) is analogous to AE, I is analogous to m, and 8 is analogous to u. There- 
fore,  by replacing AE, m, and u with C, I, and 8, respectively, all the previously 
derived equations for the longitudinal vibration of beams can be applied directly to tor -  
sional analyses of s t ructures  whose equation of motion is compatible with equation (28). 
This compatibility is only satisfied when the elastic axes of all branches a r e  everywhere 
concentric. 
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Derivation of Orthogonality Relationships 

Several of the classical iteration techniques for solving equation (21) depend upon 
orthogonality relationships f o r  obtaining modes higher than the fundamental. These rela- 
tionships are derived herein. 

From equation (16), the equation for the pth natural mode can be written as 

where v,(p) = Vl(0) (p). Premultiplying equation (32) by k(q)Jrm], where Lq(q] is 

the qth natural mode, gives 

Proceeding in a s imilar  manner for the qth mode gives 

The transposition of equation (18) gives 

b(q)J [fnJ{l} = LdP] pg{1} = 0 

Also, since p] and rmd a r e  symmetrical, 

(3 5) 

and 

Therefore, subtracting equation (34) from equation (33) and utilizing equations (35) and 
(36) gives 

Then from equation (37) for p f q 



Substituting equations (35) and (38a) into equation (33) gives 

Equations (38) are then two valid orthogonality relationships. Equation (38b) is 
generally preferred, however, because of its simplicity. 

Solutions to Eigenvalue Problem 

It is beyond the scope of this paper to enumerate the iterative procedures for 
solving eigenvalue problems and to discuss the advantages of each. The methods can 
generally be categorized into two basic types: those which replace a trial vector with an 
improved trial vector, and those which replace a square matrix with an improved square 
matrix. A method of each type is discussed briefly herein. 

Iteration and sweeping.- A classical method for  solving eigenvalue problems 
involves the replacement of a trial vector by an improved vector obtained by multiplying 
the trial vector by the coefficient matrix. The method is classical and is documented in  
numerous works (e.g., ref. 10). Applying this process to  equation (21), however, gives 
only the fundamental mode. 

Equation (21) can be modified by any one of several  different procedures to  deter- 
mine higher modes. One particular method which has proved very satisfactory is out- 
lined in reference 11. By utilizing the orthogonality relationship (eq. (38b)), the higher 
modes can be determined by the iteration of the following modified matrix equation: 

(p = 2, 3, . . .,n-1) 

where 

E] is defined by equation (21) 

(3 9) 
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and . 

= E ( P  - 1,3 - I 
(p = 3, 4, 5, . . ., n) 

The [S(p)) matrix is a so-called sweeping matrix which removes the components 
of all modes below the pth mode from the trial iteration vector cp 
suitable for  desk calculator or  digital computer solution. 

. This method is { a> 

The characteristic polynomial of equation (39) clearly is of order  "n"; therefore, 
the system has rcnrr eigenvalues (A's) .  Only n - 1 of these eigenvalues and modes can 
be obtained by iteration. The remaining mode is spurious and corresponds to a zero  
eigenvalue (A). The existence of this spurious mode can be proved as follows: 

It is noted in equation (21) that 

Since [GI is the influence coefficient matrix for a beam fixed at the first mass,  the first 
row and f i rs t  column of k] a r e  null, and [GI is, therefore, singular. It then follows 
from the theory of determinants (ref. 12, p. 25) that [a is also singular - that  is, 

It can be fur ther  concluded from the theory of determinants (ref. 12, pp. 68-69) that the 
singularity of necessitates a zero eigenvalue (A) of equation (21). 

The mode corresponding to this zero eigenvalue must satisfy equation (21) for 
A = 0. Thus, 

The singularity of [D] is a necessary and sufficient condition to guarantee a nontrivial 
solution to equation (42) (ref. 13). 
and can be shown by substitution to be 

This nontrivial solution has  no physical significance 
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From physical considerations there are n - 1 elastic modes and one rigid body 
(zero frequency) mode associated with the lumped m a s s  system which led to equation (21). 
The transformation resulting from equation (19) eliminated the rigid body mode and 
replaced it by the aforementioned spurious mode. Iteration of equation (21) thus only 
yields the n - 1 dominant elastic modes. 

Matrix diagonalization.- The computer age has revived interest in methods for 
solving characteristic value problems in which the coefficient matrix is brought to diag- 
onal or nearly diagonal form by a sequence of orthogonal transformations. Among these 
are many variations of an old procedure formulated by Jacobi in which the matrix is diag- 
onalized; this matrix diagonalization leads to  solution for all modes and frequencies 
simultaneously. In a recent innovation by Givens (ref. 10, pp. 336-340) the original 
matrix is transformed to tridiagonal form and the eigenvalues are then computed from 
a Sturm sequence. 

All such methods, however, require the eigenvalue problem to be in the following 
form: 

[E] {@} = {C} (44) 

where 
put in the form of equation (44) by the following procedure. 

p] is a real  symmetric matrix and h is the eigenvalue. Equation (21) can be 

A sweeping matrix s imilar  to that of equation (39) is utilized to remove the rigid 
body mode {@(OD = {l} from the trial vector. This sweeping matrix is 

where [BIT is the transpose of the [B] matrix of equation (20). Since the rigid body 
mode has already been eliminated, this step is redundant. It does, however, lead to  the 
desired symmetrical form. 

It can be seen from equation (18) that p(18 possesses the property 

20 



Substituting equations (45) and (46) into equation (21) gives 

1 
CBICG3CBlT€d{v} = -{v} w2 

Then, introducing the change in variables 

into equation (47) leads to 

Equation (49) is then in the form of equation (44) where 

[E] = rd 1/2 [B] [G] [B] €4 'I2 

After solving equation (49) for {y}, the original modal matrix is obtained from equa- 
tion (48) as 

(4 7) 

The system given by equation (47) also has a spurious mode which corresponds to a 
zero  eigenvalue (A). The proof is s imilar  to the one given in the preceding section. The 
spurious modal vector in this case, however, turns out to be identical to the rigid body 
mode in contrast to the form of equation (43). This identity can be shown as follows: 

From equation (45), equation (47) can be written as 

where A =  - If X = 0, the spurious mode must satisfy 
u2 

This equation is obviously satisfied by the rigid body mode {q} = {1} since 
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NUMERICAL EXAMPLES 

Idealized Beam 

For the purpose of showing the operations of the matr ices  derived in the foregoing 
section, the idealized beam shown in sketch 7 is considered. This example consists of a 
solid uniform beam attached to the inside of a uniform cylindrical shell by a massless ,  
infinitely rigid point attachment which coincides with the shell center of gravity. 

Sketch 7 

For simplicity of illustration, the cylindrical shell is represented by three equal 
panels and the solid inner beam by one panel. The total mass  of each panel can be con- 
sidered concentrated at the panel center of gravity as shown by the analogous beam in 
sketch 8. 

Sketch 8 

Assume that the cross-sectional properties of the cylindrical shell a r e  m(x) and 
A(x) E(x) and those of the solid inner beam are 2m(x) and 2A(x) E(x). The matr ices  
used to formulate equation (21) are then 
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[.3 = 

1 1 1 1 1 0 0 0  

1 1 1 1 0 0 0 2  

i o 0 0  
0 1 0 0  
0 0 1 0  
0 0 0 1  

4 -1 -1 -2 

-1 -1 -1 3 

1 
5 

- -  

where the 0th branch parameters  a r e  indicated by the upper left-hand partition matrices. 

Substituting equations (51), (52), and (53) into equation (21) gives 

90AE 0 3 ( 54) 

After iteration of equation (54) the following solutions are obtained for the fundaL 
mental flexible mode: 

w(1) = -j_ 3 A E  
L m  

Substituting equations (55) into the expression for [S(2g of equation (39) gives 
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~ 0 0 2 J  

Substitution of equation (56) into the expression for p ( p g  of equation (39) gives 

mL2 
90AE 

0 2 0  

0 2 
5 2 

Substituting equation (57) into equation (39) gives 

p 5  -8 - 

L o  

.5  - 
0 
5 
0 

(57) 

After iteration of equation (58), the following solutions a r e  obtained for the second flex- 
ible mode: 
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- 1.0000 
0.8507 

4 2 )  = - L m  42P 
In a s imilar  manner, the solutions for  the third flexible mode a r e  determined to be 

-0.1489 

4 3 )  = - 
L 33Ei! 

.(%a) 

A plot of the three flexible modes obtained in this example a r e  shown in figure 1. 
It is interesting to note that even with the inclusion of branches, the number of nodal 
points corresponds to the flexible mode number (i.e., the first flexible mode has one node 
point, etc.). 

Typical Launch Vehicle 

To show the application of the matrix solution to a more realistic beam, a numerical 
example of an application to a solid-fuel booster system is presented. The vehicle param- 
e t e r s  a r e  typical of those of the Scout class. The payload parameters  were selected for 
purposes of illustration and a r e  not necessarily representative of an existing payload. 
The following assumptions a r e  employed: 

(1) The solid-fuel mass  is considered to adhere to the sides of the vehicle along the 
length and has no motion relative to the vehicle. 

(2) The contribution of the fuel stiffness to the vehicle axial stiffness is negligible. 

(3) Damping is considered to be negligible. 

(4) All deformations a r e  one-dimensional and no consideration is given to bending 
o r  breathing effects of the cylindrical shell walls. 

Figures 2 and 3 show the rocket-vehicle mass and axial-extensional-coefficient 
data, respectively, in a desirable form for the analyst. The data for these graphs a r e  
given in tables 1, 2, and 3. The analogous discrete mass  system is shown in figure 4.  
The X origin was chosen to coincide with the first discrete mass  rather than the end of 
the beam. 
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The first three normalized natural modes and their corresponding natural frequen- - 
cies  obtained from the iteration of equation (21) are shown in figure 5. Note the high 
amplitude of the payload motion in both the f i r s t  and second modes of vibration as a 
result  of the payload frequency being close to  the lower frequencies of the vehicle. 
a design can cause extensive acceleration loading on sensitive payload instrumentation 
and should be avoided if a t  all possible. 

Such 

In both the first and second modes, the vehicle is deflected in a manner analogous to 
that of the fundamental vehicle mode without the payload. The addition of the payload 
branch introduces a whole range of secondary coupled frequencies in which the payload 
oscillations a r e  either in phase or out of phase with the vehicle oscillations. 

DISCUSSION OF COMPUTATIONAL ACCURACY 

The previously derived equations pertinent to the solution were programed for the 
IBM 7094 electronic data processing system. 
cation of t h i s  method a r e  discussed. 

Some of the points of interest  in the appli- 

Choice of the Number of Lumped Masses  

The matrix solution used herein is subject to an inherent e r r o r  dependent upon the 
validity of an analogous lumped m a s s  approximation to a continuous beam. To gain an 
insight into the accuracy of the matrix solution, comparisons were made between the 
theoretical and approximate results. As mentioned previously, closed form solutions f o r  
beams of arbitrarily varying c r o s s  sections are very difficult to obtain. Therefore, cmi- 
parisons were limited to beams with uniform and exponentially varying c r o s s  sections. 
For the approximate solution the beams were divided into n equally spaced intervals 
with the lumped m a s s  at the center of gravity. The exact solutions for these beams are 
derived in appendix A. 

A standard accuracy parameter for  frequency comparison is the percent e r r o r  
which is calculated as follows: 

Wexact - Oapprox 
wexact 

Percent e r r o r  = 

No convenient standard exists for mode comparison. For the purposes of this 
paper, a root-mean-square percent e r r o r  (derived in appendix B) is used. 

The percent e r r o r  of the first five elastic modes as a function of the total number 
of lumped masses  n is given in figures 6 and 7 f o r  the frequencies and mode shapes, 
respectively. It can be seen in both figures that the cross-sectional exponential factor 
has very little effect on the percent e r ro r ,  although the range of p considered produced 
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. a wide variation in the distribution of cross-sectional area. These resul ts  indicate that 
both frequency and mode accuracy depend more on the number of masses  than on the 
variation of cross-  sectional area. A s  expected, the e r r o r  curve asymptotically 
approaches ze ro  for  high values of n. In figure 7, considerable slope discontinuities are 
apparent in the curves toward the origin. These discontinuities, for  a given mode, occur 
in the range where n is either 1 or  2 greater than the mode number. It is noted that 
in this range of n the addition of an extra mass may or may not be detrimental to  the 
mode shape. 

For most engineering applications, a 1-percent e r r o r  limit is sufficient. There- 
fore, the 1-percent-error data for  the first five modes from figures 6 and 7 are pre- 
sented in figure 8. It can be seen that the solid line corresponding to the equation 

n = 6 i + 1  

(where i is the highest mode to be determined) gives a "rule of thumb" for determining 
an adequate number of masses  to obtain both the frequencies and the modes with this 
accuracy. 

Advantages of Influence Coefficient Approach 

In discrete element structural analysis, two approaches can be taken: the stiffness 
(spring) approach and the flexibility (influence coefficient) approach. The tendency is to 
adopt the stiffness approach without consideration of accuracy loss  because the stiffness 
matrix is generally simpler to formulate than the flexibility matrix. The stiffness matrix 
approach, however, necessitates the formulation of the matrix eigenvalue problem such 
that the eigenvalue corresponding to the highest natural frequency is dominant. 

The pr ime advantage of the flexibility approach is that the problem can be formu- 
lated so that the mode corresponding to the lowest natural frequency is dominant. It is 
generally accepted that the various means of solving eigenvalue problems lose accuracy 
when proceeding from the dominant mode to the subdominant modes. The magnitude of 
this accuracy degeneration varies somewhat with different methods of solution, but the 
author's experience and that of Batchelder and Wada (ref. 4) indicate that the e r r o r  is 
dependent on the ratio of the dominant eigenvalue to the subdominant eigenvalue. Also, 
experience has shown that as this ratio becomes large, accuracy is lost in the subdomi- 
nant modes. 

A sizable spread between the dominant and subdominant frequencies can result  from 
a large number of degrees of freedom and/or large variations in the stiffness or  m a s s  in 
different par ts  of the system. The stiffness matrix approach can.lead to complete loss  of 
accuracy in the lower modes, which are of prime interest; whereas, the flexibility matrix 
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approach only loses accuracy in the less important higher modes. This fact is simply 
illustrated by comparative solutions of the spring-mass system shown in sketch 9. 

- 

k l  = 1 k2 = 1 k3 = 1 k4 = 1Oq 

m 1 =  1 m2 = 1 m 3 = 1  m 4 = 1  m5 = 1 

Sketch 9 

From sketch 9 i t  can be seen that as the value of 77 becomes large, k4 becomes 
large and the lower frequencies of the system approach those of the system shown in 
sketch lO(a). In addition, the value of k3 becomes negligible in comparison with the 
value of b, and the highest frequency of the system approaches the frequency of the 
uncoupled two mass system shown in sketch lo@). The frequencies of these two simple 
degenerate systems can be determined with high accuracy (by any method) and are, 
therefore, used as a reference for a subsequent comparative study. 

kl = 1 k2 = 1 kg = 1 

A a - 
m l =  1 m2 = 1 m3 = 1 m4 = 2 

(a) First three modes. 

k4 = 10' 

1 
m4 = 1 m5 = 1 

(b) Fourth mode. 
Sketch 10 

The natural frequencies were obtained as a function of increasing values of q for  
the system of sketch 9, by methods employing both the flexibility and stiffness matrices. 
The ratios of these frequencies to the aforementioned reference frequencies are given in 
table 4. If there were no loss of accuracy in  computation, the ratios w/wref would 
approach unity as q becomes large. A departure from this pattern indicates loss  of 
numerical accuracy in computation. 

It can be seen that method I (Givens solution to stiffness matrix) gives good answers 
up to the point q = 6, which corresponds to  an approximate ratio of 10 3 between the high- 

e s t  and the lowest mode frequencies. Beyond this point there is complete accuracy loss  
in all but the highest mode. Method I1 (iteration and sweeping solution to  st iffness matrix) 
indicates similar accuracy loss in the lower modes; although, the drop-off is not as sharp 
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* as in method I. Method I11 (iteration and sweeping solution to flexibility matrix) and 
method IV  (Givens solution to flexibility matrix) give very similar answers and show no 
accuracy loss  except in the highest mode. For low values of 17 all methods a r e  seen 
to give nearly the same answers. 

This example does not represent a real  structure but it does point out the type of 
problems that can occur and have occurred to the author's knowledge in practical analy- 
ses of s t ructures  with widely varied mass  and elastic properties. It also clearly demon- 
s t r a t e s  the increased lower mode computational accuracy obtained by the flexibility 
approach. 

In many structural problems, the spread between the highest and lowest natural 
frequencies is small  enough to yield satisfactory results by the stiffness matrix approach. 
There is always the element of doubt, however, and the analyst must be constantly aware 
of impending accuracy loss in the lower modes. The influence coefficient approach of 
this paper is thus advocated to yield confidence in the lower modes and to alleviate the 
extra work associated with an approach which at t imes breaks down. 

CONCLUDING REMARKS 

An influence coefficient matrix approach to the problem of longitudinal unconstrained 
vibrations of nonuniform multibranch beams is presented. The derivation is completely 
general and requires  only basic parameter changes from one application to another. By 
making a change in variables the method can also be applied to torsional vibration prob- 
lems. 
data processing system and have given excellent results in numerous applications. 

The derived matrix equations have been programed for the IBM 7094 electronic 

A complete numerical example is given to illustrate the computations involved and 
a detailed illustration of the method applied to a launch vehicle is provided. 

Comparison of the method with available exact solutions indicates that the accuracy 
of the solution is practically independent of cross-sectional variations but is contingent 
upon the chosen number of lumped masses  in the analogous system. An approximate rule 
is given for determining the number of lumped masses to yield less than a l-percent 
e r r o r  in frequencies and mode shapes. 

The influence coefficient matrix method is also compared with the stiffness matrix 
approach and is shown to be more accurate in the lower modes when there  is a wide var- 
iation in the magnitudes of the frequencies of the system. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., September 19, 1966, 
124-11-05-30-23. 
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APPENDIX A 

CLASSICAL WAVE EQUATION SOLUTION FOR BEAM WITH 

EXPONENTIALLY VARYING CROSS SECTION 

For completeness, the solution for a beam with exponentially varying c r o s s  section 
is given. The classical wave equation for longitudinal vibrations is 

where 

A = A(x) cross-sectional a r e a  

E modulus of elasticity 

p = p(x) mass  density 

u = u(x,t) displacement 

For undamped simple harmonic motion of frequency w ,  

u(x,t) = cp(x)eiwt 

Substituting this expression into equation (Al) gives 

The beam under consideration has a cross-sectional area such that 

A(x) = A(0)e 2PXIL 

where L is the beam length and p is a constant. 

Substituting this expression into equation (A2) gives 
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APPENDIX A 

where A and B are constants of integration. 

If the free-free boundary conditions 

are utilized to evaluate A and A, equation (A4) becomes 

where 

c = -  nnB an arbi t rary constant 
P 

n = 0 ,  1, 2 , .  . . an integer 

Normalizing the displacement on cp(0) gives 

The frequency of vibration is determined from the evaluation of h to be 

(A7) 

Equations (A6) and (A7) give the theoretical solution for  the natural modes and frequen- 
cies of vibration. These equations reduce to the classical solution for a uniform beam 
i f  p = 0. 
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APPENDIX B 

cp’e 

ROOT-MEAN-SQUARE PERCENT ERROR 

E r r o r  : 

To compare an approximate and theoretical curve by a single meaningful parameter 
is difficult since each curve consists of an infinite number of points. This difficulty is 
compounded by the more basic problem of how to initially aline the two curves. 

The approximate mode shapes are normalized by an arbitrary constant. Therefore, 
adjusting this constant such that the e r r o r  between the theoretical and approximate curves 
is a minimum yields a logical approach to alinement. 

One method for determining an e r r o r  parameter is to average the percent e r r o r  of 
the points along the curve o r  to take the maximum value. This process, however, leads 
to a distorted accuracy picture due to  the high percent e r r o r  in the nodal point regions. 
A somewhat abstract but yet more realistic approach is to  base the percent e r r o r  on the 
average value of the theoretical curve. The derivation of such a parameter is included 
herein. 

Let E2 represent the mean square e r r o r  between a typical theoretical curve and 
an approximate curve as depicted in sketch 11. 

- q(x) (theoretical curve) 
- - -  <(x) (approximate curve) 

0 L 
X 

Sketch 11 

The value of E2 is then given as 

2 
E2 = ~ ~ o L ~ c ( x )  L - q(xg dx 

where N is an arbi t rary normalizing coefficient of c(x). For the minimum value 
of E2, 

Performing the differentiation of equation (Bl) indicated by equation (B2) and solving for  
N gives 
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APPENDIX B 

Equation (B3) can then be substituted into equation (Bl) to evaluate E2. 

The mean square value of ~ ( x )  is 

The root-mean-square (rms) percent e r r o r  based on q(x) is then 

r m s  percent error = - E x 100 - 
(P (x) 

Equation (B5) has been programed for the IBM 7094 electronic data processing sys- 
tem. Since the curve <(x) was defined by a limited number of points, a second-order 
interpolation scheme was used for the numerical integrations of the integrals in equa- 
tions (Bl), (B3), and (B4). 

I 
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I l------ 

0.036808 
.046624 
.046624 
.071398 
.071398 
.049883 
.04 9883 
.059536 
-059536 
.lo0380 
.lo0380 
.007668 
.007668 
.O 18 54 9 
.018549 
.012378 
.012378 
.025331 
.02 533 1 
.023834 
.023834 
.024559 
.024559 
.044689 
.044689 
.013808 
.013808 
.02 5466 
.025466 
.022530 
.022530 
.024559 
.024559 
.044689 

1 .044689 

317.1 
322.1 
322.1 ' 331.4 
331.4 
34 5.4 
345.4 
350.4 
350.4 
451.9 

TABLE 1.- VEHICLE MASS DISTRIBUTION 

(a) U.S. Customary Units 

m, 
lbf - sec2 

2 in 
x, 
in. 

456.9 
468.449 
468.449 
468.949 
468.949 
469.199 
469.199 
469.389 
469.389 
469.949 
469.949 
470.949 
470.949 
471.199 
471.199 
474.949 
474.949 
476.199 
476.199 
476.749 
476.749 
482.285 
482.285 
482.749 
482.749 
483.199 
483.199 
485.999 
488.285 
488.285 
488.785 
488.785 
490.799 
490.799 
496.299 

m, 
lbf- sex2 

2 in 

0.004788 
.004788 
.027562 
.027562 
.O 19 565 
.019565 
.021480 
,021480 
.02 37 84 
.023551 
.028338 
.028080 
.034 16 1 
.034032 
.O 1840 1 
.017728 
.011232 
.011077 
.0063 15 
.006211 
.008463 
.008230 
.014880 
.014880 
.012681 
.012681 
.O 11439 
.011439 
.011827 
.005952 
.006315 
.018245 
.O 193 58 
.04 503 1 
,045031 

x, 
in. 

495.299 
497.299 
497.299 
520.789 
520.789 
522.199 
522.199 
526.789 
526.789 
531.099 
531.099 
533.049 
533.049 
537.269 
537.269 
538.809 
538.809 
540.199 
54 5.199 
548.309 
548.309 
552.0 
554 .O 59 
554.059 
559.949 
5 59.949 
562.0 
565.199 
566.0 
573.46 
573.46 
577.629 
577.629 
577.629 

m, 
lbf-sec2 I 

.051756 

.045316 

.045316 

.046558 

.04 6 558 

.004710 

.004710 

.0159318 

.0159318 

.027685 

.027685 

.005435 

.005435 

.005823 

.005564 

.006185 

.005900 

.005176 

.004790 

.0088 5 1 

.00880 

.008644 

.00194 1 

.OO 1579 

.000924 

.00070 

.000655 

.000500 

.000466 

.001633 

.001633 

.OO 1568 
0 
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x, 
m 

-0.4013 
0 

.4851 

.4851 

.7518 

.7518 
2.5959 
2.5959 
4.4018 
4.4018 
4.5034 
4.5034 
4.7346 
4 3346 
4.7854 
4.78 54 
4.97 59 
4.97 59 
5.2680 
5.2680 
5.4585 
5.4585 
8.0543 
8.0543 
8.1813 
8.1813 
8.4176 
8.4176 
8.7732 
8.7732 
8.9002 
8.9002 

TABLE 1.- VEHICLE MASS DISTRIBUTION - Concluded 

(b) SI Units 

m, 
N-sec2 

2 m 

253.782 
321.461 
321.461 
492.272 
492.272 
343.931 
343.93 1 
4 10.486 
410.486 
692.096 
692.096 

52.869 
52.869 

127.891 
127.891 
85.343 
85.343 

174.6 51 
174.6 51 
164.330 
164.330 
169.328 
169.328 
308.120 
308.120 
95.203 
95.203 

175.582 
175.582 
155.339 
155.339 
169.328 

x, 
m 

11.4783 
11.4783 
11.60 53 
11.60 53 
11.8986 
11.8986 
11.9 113 
11.9113 
11.9177 
11.9177 
11.9225 
11.9225 
11.9367 
11.9367 
11.9621 
11.9621 
11.9685 
11.9685 
12.0637 
12.0637 
12.0955 
12.0955 
12.1094 
12.1094 
12.2 500 
12.2 500 
12.2618 
12.2618 
12.2733 
12.2733 
12.3444 
12.4024 
12.4024 
12.4151 
12.4151 

m, 
N-sec2 

2 m 

169.328 
308.120 
308.120 
33.012 
33.012 

190.033 
190.033 
134.896 
134.896 
148.099 
148.099 
163.985 
162.378 
195.384 
193.605 
235.532 
2 34.642 
126.870 
122.230 
77.442 
76.373 
43.540 
42.823 
58.350 
56.744 

102.594 
-102.594 
87.432 
87.432 
78.869 
78.869 
81.544 
41.038 
43.540 

125.795 

x, 
m 

12.4663 
12.4663 
12.6060 
12.6060 
12.6314 
12.6314 
13.2280 
13.2280 
13.2638 
13.2638 
13.3804 
13.3804 
13.4899 
13.4899 
13.5394 
13.5394 
13.6466 
13.6466 
13.68 57 
13.68 57 
13.7210 
13.8480 
13.9270 
13.9270 
14.0208 
14.0731 
14.0731 
14.2227 
14.2227 
14.2748 
14.3560 
14.3764 
14.56 59 
14.56 59 
14.6718 
14.6718 

m, 
N-sec2 

m2 

133.469 
310.478 
310.478 
356.845 
3 56.845 
312.443 
312.443 
321.006 
321.006 
32.474 
32.474 

109.846 
109.846 
190.881 
190.881 
37.473 
37.473 
40.148 
38.362 
42.644 
40.679 
35.687 
33.026 
61.025 
60.674 
59.598 
13.383 
10.887 
6.371 
4.826 
4.516 
3.447 
3.213 

11.259 
10.811 
0 
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TABLE 2.- VEHICLE AXIAL EXTENSIONAL COEFFICIENT 

(a) U.S. Customary Units 

x, 
in. 

0 
1.476 
1.476 
6.476 
6.476 
9.076 
9.076 

11.376 
11.376 
13.976 
13.976 
15.976 
15.976 
17.976 
17.976 
20.776 
20.776 
24.176 
24.176 
25.376 
25.376 
25.776 
25.776 
28.476 
28.476 
32.376 
32.376 
37.376 
37.376 

100.776 
100.776 
103.776 
103.776 
161.276 
161.276 
164.276 
164.276 
169.376 
169.376 
171.876 
171.876 
171.976 

AE, 
lbf 

295.1 X 106 
295.1 
280.3 
280.3 
309.4 
309.4 

1201.7 
1201.7 
504.4 
504.4 
613.6 
613.6 
699.9 
699.9 

2350.4 
2350.4 
841.88 
841.88 
689.3 
689.3 
316.7 
3 16.7 
576.4 
576.4 
316.7 
316.7 
576.4 
576.4 
316.7 
316.7 
576.4 
576.4 
316.7 
316.7 
576.4 
576.4 
316.7 
316.7 
84 1.9 
841.9 
316.7 
316.7 

x, 
in. 

171.976 
172.976 
172.976 
176.976 
176.976 
185.356 
185.356 
187.956 
187.956 
193.582 
193.582 
198.5 
198.5 
199.3 
199.3 
203.756 
203.756 
205.916 
205.916 
208.7 
208.7 
209.556 
209.556 
2 12.2 56 
212.256 
2 13.6 56 
213.656 
2 15.556 
215.556 
3 15.556 
3 15.556 
317.156 
3 17.156 
320.156 
320.156 
322.156 
322.156 
324.7 
332.2 
335.2 
336.0 
342.0 

AE, 
lbf 

1041.3 X lo6 
1041.3 
2449.2 
2449.2 

39.0 
39.0 
78.0 
78.0 

112.8 
112.8 
135.2 
135.2 
369.2 
369.2 
130.0 
130.0 
118.6 
118.6 
169.0 
169 .O 
442.0 
442.0 
280.8 
280.8 
730.1 
730.1 
137.8 
137.8 
70.5 
70.5 

130.0 
130.0 
431.6 
431.6 
213.2 
213.2 
71.42 
98.64 

136.83 
425.6 
136.83 
112.6 

x, 
in. 

345.4 
345.4 
346.5 
349.0 
349.0 
350.4 
350.4 
352.3 
452.3 
453.9 
456.0 
4 56.9 
456.9 
458.8 
458.8 
461.4 
461.4 
461.7 
461.7 
465.6 
467.6 
467.6 
468.9 
468.9 
469.699 
470.011 
470.011 
471.824 
471.824 
489.699 
489.699 
49 1.03 5 
491.03 5 
492.0 
492.0 
537.268 
543.268 
549.268 
553.627 
559.627 
5'71.62 
574.327 
577.629 

AE, 
lbf 

199.1 x 106 
612.0 
199.1 
336.7 
?30.? 
730.1 
195.0 
70.5 
70.5 

184.5 
529.1 
529.1 
187.8 
187.8 
75.4 
75.4 

707.2 
707.2 

75.4 
75.4 

210.6 
190.9 
452.4 
452.4 
870.7 
870.7 
162.8 
98.5 
33.46 
33.46 

182.16 
182.16 
25.74 
25.74 
4.45 
2.91 
1.91 
1.37 
.782 
.398 
. E 3  

4.62 
0 
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TABLE 2.- VEHICLE AXIAL EXTENSIONAL COEFFICIENT - Cancluded 

(b) SI units 

x, 
m 

0 
.0375 
.0375 
.1645 
.164 5 
.2305 
.2305 
.2890 
.2890 
.3550 
.3550 
-4058 
.4058 
.4566 
.4 566 
.5277 
.5277 
.6141 
.6141 
.6446 
.6446 
.6548 
.6548 
.7233 
.7233 
.8224 
.8224 
.9494 
.9494 
2.5597 
2.5597 
2.6359 
2.6359 
4.0964 
4.0964 
4.1726 
4.1726 
4.3022 
4.3022 
4.3656 
4.3656 
4.3682 
4.3682 

131.266 X lo7 
131.266 
124.683 
124.683 
137.627 
137.627 
534.540 
534.540 
224.367 
224.367 
272.942 
272.942 
311.329 
311.329 
1045.504 
1045.504 
374.485 
374.48 5 
306.614 
306.614 
140.874 
140.874 
2 56.394 
2 56.394 
140.874 
140.874 
256.394 
2 56.394 
140.874 
140.874 
256.394 
256.394 
140.874 
140.874 
256.394 
2 56.394 
140.874 
140.874 
374.494 
374.494 
140.874 
140.874 
463.191 

x, 
m 

4.3936 
4.3936 
4.49 52 
4.4952 
4.7080 
4.7080 
4.7741 
4.7741 
4.9170 
4.9170 
5.0419 
5.0419 
5.0622 
5.0622 
5.1754 
5.1754 
5.2303 
5.2303 
5.3010 
5.3010 
5.3227 
5.3227 
5.3913 
5.3913 
5.4269 
5.4269 
5.4751 
5.4751 
8.0151 
8.0151 
8.0558 
8.0558 
8.1320 
8.1320 
8.1828 
8.1828 
8.2474 
8.4379 
8.5141 
8.5344 
8.6868 
8.7732 
8.7732 

x, 
m 

463.191 X lo7 
1089.4 53 
1089.453 
17.348 
17.348 
34.696 
34.696 
50.176 
50.176 
60.140 
60.140 
164.228 
164.228 
57.827 
57.827 
52.756 
52.756 
75.174 
75.174 
196.610 
196.610 
124.90 5 
124.90 5 
324.763 
324.763 
61.296 
61.296 
31.360 
31.360 
57.827 
57.827 
191.984 
19 1.984 
94.836 
94.836 
31.769 
43.877 
60.865 
189.315 
60.865 
50.087 
88.564 
272.230 

8.8011 
8.8646 
8.8646 
8.9002 
8.9002 
8.9484 
11.4884 
11.5291 
11.5824 
11.60 53 
11.6053 
11.653 5 
11.653 5 
11.7196 
11.7196 
11.7272 
11.7272 
11.8262 
11.8770 
11.8770 
11.9101 
11.9 101 
11.9304 
11.9383 
11.9383 
11.9843 
11.9843 
12.4384 
12.4384 
12.4723 
12.4723 
12.4968 
12.4968 
13.6466 
13.7990 
13.9514 
14.0621 
14.2145 
14.5191 
14.5879 
14.6718 

88.564 X lo7 
149.771 
324.763 
324.763 
86.740 
31.360 
31.360 
82.069 
235.3 54 
235.354 
83.537 
83.537 
33.539 
33.539 
314.577 
314.577 
33.539 
33.539 
93.679 
84.916 
201.236 
201.236 
387.305 
387.305 
72.417 
43.815 
14.884 
14.884 
81.028 
81.028 
11.450 
11.450 
1.979 
1.294 
.850 
.609 
.3478 
.1770 
.0752 
2.055 
0 
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TABLE 3.- PAYLOAD PHYSICAL CHARACTERISTICS 

(a) U.S. Customary Units 

mX7 

lbf-sec2 x, 
in. 

.l 

AE, 
lbf 

472.32 
532.32 

(b) SI Units 

inL 

0.0200 2.0000 x 106 
.0200 2 .oooo 

11.997 
13.521 

39 

137.8951 0.8896 X lo7 
137.8951 .8896 



TABLE 4.- COMPARISON OF SOLUTIONS TO EIGENVALUE PROBLEMS OBTAINED FROM 

BOTH STIFFNESS AND FLEXIBILITY APPROACHES 

2 4 5 6 7 8 10 Methoda 

Frequency ratio, w/wref b 

80.404 

1 .o 
1 .o 

1798.8 
1.1656 
1 .o 
1.0 

1310.2 

1.0 
1 .o 
1 .o 
1 .o 

1.5 x lo5 

.99984 

(4 
(4 

0.99952 
.99952 
.99952 
.99952 

0.99943 
.99943 
.99943 
.99943 

0.99979 
.99979 
.99979 
.99979 

1 

2 

3 

1.0013 
1.0013 
1.0013 
1.0013 

4 

0.65523 
1.3257 j 1.8202 

4 14.142 

I 
I1 

I11 
IV 

I 
I1 

I11 
IV 

I 
I1 

111 
IV 

I 
I1 

Il l  
IV 

0.999652 0.94 11 1 
!158.3 6825.3 

1.0 1.0 
1 .o 1.0 

0.99962 2.0107 
1.1202 14.656 
1 .o 1.0 
1 .o 1.0 

0.99992 1.6042 

1.0 1.0 
1 .o 1 .o 
1 .o 1.0 
1 .o 1.0 

1.0027 .97831 

.99999 .99988 

( 4  ( 4  

0.65523 
1.3257 
1.8202 

141.42 

0.80404 
21 580. 

1.0 
1.0 

18.001 

1 .o 
1.0 

13.124 

1 .o 
1 .o 
1 .o 
1.0 

.97744 

.99844 

(c) 
(4 

0.99989 
.99996 
.99999 
.99999 

1.0 
1 .o 
1 .o 
1.0 

0.99999 
.99999 
.99999 
.99999 

- 
1 .o 
1 .o 

1.0 
(4 

Reference frequency, uref 

0.99965 
.99982 
1.0 
1.0 

0.99998 
1.0 
1.0 
1.0 

0.99999 
.99999 
.99999 
1.0 

1 .o 
1.0 
(4 
.99932 

0.65523 
1.3257 
1.8202 

447.21 

0.65523 
1.3257 
1.8202 

4472.1 

0.65523 
1.3257 
1.8202 

14 142.1 

0.65523 
1.3257 
1.8202 

1414.2 

0.65523 
1.3257 
1.8202 

141 421. 

a I: Givens solution (ref. 10, pp. 336-340) to stiffness matrix. 
11: Iteration and sweeping solution (ref. 11) to stiffness matrix. 

111: Iteration and sweeping solution to flexibility matrix. 
IV: Givens solution to flexibility matrix. 

b w  i s  the calculated modal frequencies of 5 m a s s  system; 

CSolution failed to  converge. 

dImaginary (complex) frequency. 

wref is the reference modal frequencies calculated from degenerate 4 m a s s  and 2 m a s s  systems. 



Figure 1.- Numerical example natural modes. 
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conducted so as t o  contribute . . . to the expansion of human knowl- 
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